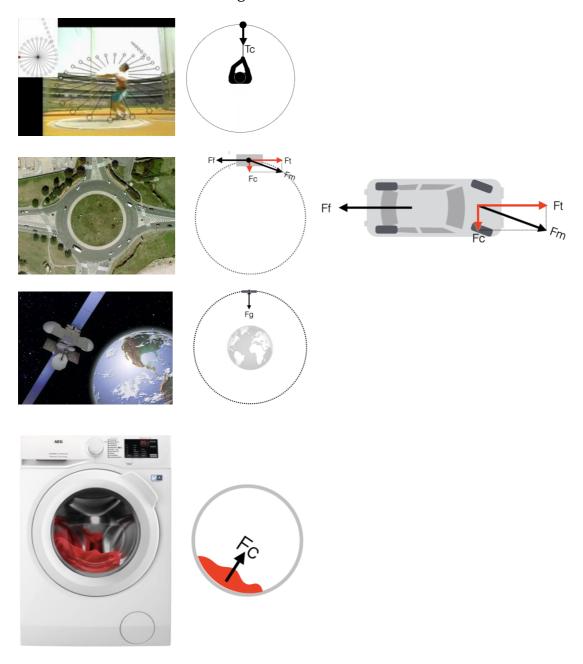
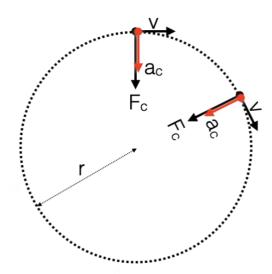

Mouvements circulaires uniformes - MCU

Un objet est en mouvement rectiligne uniforme (MCU) lorsque sa <u>trajectoire est un cercle</u> (ou un arc de cercle) et que <u>la grandeur (norme) de sa vitesse est constante</u>.


La grandeur de la vitesse est constante mais sa direction, tangente à la trajectoire, change constamment :

La vitesse change en permanence. Il y a donc une accélération qui a pour effet non d'augmenter ou diminuer la vitesse mais d'en changer la direction. Cette accélération est due à la force résultante exercée sur l'objet et qui est dirigée vers le centre de la trajectoire :


La nature de cette force centrifuge diffère selon les situations :

Accélération lors d'un mouvement circulaire uniforme

Lors d'un mouvement circulaire uniforme, le mobile parcourt une trajectoire circulaire avec une vitesse à norme constante.

Mais la <u>direction de la vitesse change</u>. Ce changement est dû à une accélération $\overrightarrow{a_c}$ (m/s²) dirigée vers le centre de la trajectoire (accélération centripète).

La norme a_c (m/s²) de cette accélération est constante mais sa direction, perpendiculaire à la vitesse, change. Elle est proportionnelle au carré de la norme de la vitesse v (m/s) et inversement proportionnelle au rayon r (m) de la trajectoire :

$$a_c = \frac{v^2}{r}$$

L'accélération centripète est due à une force centripète F_c (N), représentant la <u>résultante</u> <u>de toutes les forces</u> qui agissent sur le mobile. On peut ainsi utiliser la loi fondamentale de la dynamique pour calculer l'accélération centripète :

$$a_c = \frac{F_c}{m} \Rightarrow F_c = ma_c$$

Exercices

- 1) Une voiture d'une tonne tourne à la <u>vitesse à norme constante</u> de 10 m/s dans un rond-point de 50 m de rayon.
 - a) Quelle est son accélération?

$$a = \frac{v^2}{r} \qquad a = \frac{F}{m}$$

$$a_c = \frac{10^2}{50} = 2 \text{ m/s}^2$$

b) Quelle est l'intensité de la force centripète exercée sur la voiture ?

$$F_c = ma_c = 1000 \cdot 2 = 2000 N$$

- 2) On fait tourner une pierre de 2 kg attachée à une corde avec une vitesse de 3,6 km/h. La longueur de la corde est de 1 m.
 - a) Quelle est l'accélération de la pierre?

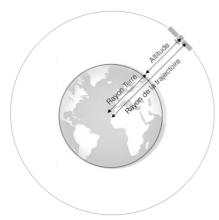

$$a_c = \frac{v^2}{r}$$
 $v = 3.6 \frac{km}{h} = \frac{3.6}{3.6} = 1$ m/s
 $a_c = \frac{1^2}{1} = 1$ m/s²

b) Quelle est la tension de la corde?

$$F_c = ma_c = 2 \cdot 1 = 2 N$$

- 3) Un satellite de 500 kg tourne autour de la Terre à la vitesse de 7,35 km/s à une altitude de 1000 km. (Rayon de la Terre \approx 6370 km)
 - a) Quelle est son accélération?

$$a_c = \frac{v^2}{r}$$
 $v = 7.35 km/s = 7350 m/s$
 $r = Alt + R_T = 1000000 + 6370000 = 7370000 m$
 $a_c = \frac{7350^2}{7370000} = 7.33 m/s^2$

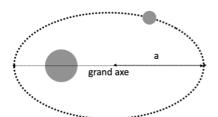


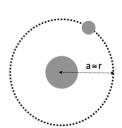
b) Quelle est l'origine de la force centripète exercée sur le satellite

Force de gravitation (la gravité)

Attention à ...

- Le rayon de la trajectoire *r* représente la distance entre le mobile et le centre de la trajectoire.
- Pour les mouvements des satellites ne confondez pas le rayon r avec l'altitude du satellite. L'altitude est la distance entre le satellite et la surface de la Terre. Pou calculer r, il faute additionner l'altitude avec le rayon de la Terre.


- La force centripète qui maintient les satellites et planètes sur leurs orbites est la force de gravitation F_g (N)
- Les lois de Kepler (ou des lois dérivées) fournissent les liens entre la période T, la vitesse et le rayon de la trajectoire d'un satellite tournant autour d'une planète.


$$F_g = \frac{m_1 \cdot m_2}{r^2} G$$

$$F_g = \frac{m_1 \cdot m_2}{d^2} \cdot G$$

$$T = 2\pi \sqrt{\frac{a^3}{GM}} \qquad v = \sqrt{\frac{GM}{r}}$$

 $a = \frac{1}{2}$ grand axe $\approx r$

Exercices

- 4) Un satellite d'une tonne tourne autour de la Terre à une altitude de 1000 km. (Rayon de la Terre ≈ 6370 km, masse de la Terre $\approx 5,97.10^{24}$ kg)
 - a. Quelle est l'intensité de la force centripète exercée sur le satellite ?

La force centripète exercée sur ce satellite c'est la force de gravitation:

$$F_g = \frac{m_1 m_2}{d^2} G$$
 (formulaire CRM p. 135):
 $d = 10^6 + 6,37 \cdot 10^6 = 7,37 \cdot 10^6 m$
 $F_c = F_g = \frac{10^3 \cdot 5,97 \cdot 10^{24}}{(7,37 \cdot 10^6)^2} 6,67 \cdot 10^{-11} = 7331 N$

b. Quelle est son accélération?

$$a_c = \frac{F_c}{m} = \frac{7331}{1000} = 7{,}331 \text{ m/s}^2$$

c. Ouelle est sa vitesse?

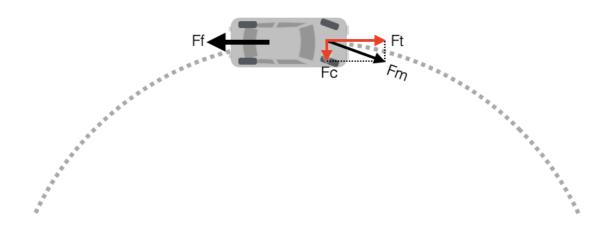
$$a_c = \frac{v^2}{r} \Rightarrow v = \sqrt{a_c r} = \sqrt{7,331 \cdot 7,37 \cdot 10^6} = 7350 \ m/s \ (26460 \ km/h)$$

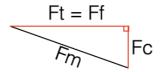
Autre méthode

Vitesse d'un satellite sur une orbite circulaire (formulaire CRM p. 141) :

$$v = \sqrt{\frac{GM}{r}} = \sqrt{\frac{6.67 \cdot 10^{-11} \cdot 5.97 \cdot 10^{24}}{7.37 \cdot 10^{6}}} = 7350 \, m/s \quad (26460 \, km/h)$$

- 5) Une voiture d'une tonne tourne à 10~m/s dans un rond-point de 100~m de rayon. Les frottements sont de 300~N.
 - a. Calculer l'accélération de la voiture


$$a_c = \frac{v^2}{r} \qquad a_c = \frac{F_c}{m}$$


$$a_c = \frac{10^2}{100} = 1 \text{ m/s}^2$$

b. Calculer l'intensité de la force centripète exercée sur la voiture.

$$F_c = ma_c = 1000 \cdot 1 = 1000 N$$

c. Calculer l'intensité de la force motrice

Pythagore:
$$Fm^2 = F_F^2 + F_c^2 \Rightarrow Fm = \sqrt{F_F^2 + F_c^2} = \sqrt{300^2 + 1000^2} = 1044 \text{ N}$$